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ABSTRACT 

The inadequacy of methods described so far for establishing the q-line which limits from 
above the surface corresponding to the advancing solid-liquid phase transition in the Skau’s 

cryometric technique has been emphasized. 
A new method has been presented which makes it possible to ascertain the q-line and to 

find the corrected T-line which allows us to distinguish between the heat effect connected 
with the phase transition and the heat effect corresponding to the temperature growth of the 
sample investigated, at any point in the melting curve. 

INTRODUCTION 

Skau’s kinetic cryometry serves to determine the equilibrium temperature 
T between the solid and liquid phases as a function of the melted fraction F 
or its reciprocal: T = f(l/F) [l]. The knowledge of this pair of values 
enables us to determine other quantities occurring in cryometric equations. 
Sample temperature is recorded experimentally over a time period 2 within 
which a programmed heating-block temperature T,, is being raised linearly. 
A representative diagram obtained by Skau’s technique is reproduced in Fig. 
1. The phase transition area is bounded by the curves TP and Ti. The Ti-line 
is obtained as an approximation of the T,-line and srmulates the course of 
the Tr-line for the situation when no phase transition takes place. The degree 
of phase transition corresponding to successive points in the T,-curve is 
determined by the heat balance involving an adopted simplified heat-transfer 
model. 

(i) Heat is assumed to be transferred by conduction exclusively and, in 
agreement with Newton’s law of cooling, the quantity of heat transferred 
through a unit surface area is assumed to be proportional to the temperature 
difference of the surfaces between which this heat is exchanged. 

qp = 4T, - Tr) 0) 
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Fig. 1. Typical curve illustrating results obtained by the Skau method, with points used for 
limiting the fields adopted by Lyashkevitch [2] and Cisse and Clechet [4]. 

where qP is the thermal flux density to the surface, (Y is the heat-transfer 
coefficient, q is the temperature of the heating surface (environment) and Tp 
is the temperature of the surface examined. 

The total thermal effect Q, heat transferred through the surface during the 
time period 2, to 2, 

(ii) The influence of the change of the surface of contact of the sample 
with the cell wall during melting is neglected and the heat transfer coefficient 
(Y is assumed to be constant. Then (YS = k = constant. 

(iii) Any heat c apacity involved is taken as temperature independent over 
the temperature range of interest and the difference in the heat capacities of 
the solid and liquid is neglected. 

Actually, Skau’s apparatus is built up from various materials differing in 
thermal conductivity and heat capacity which, in addition, are temperature 
dependent; during the melting process the temperature difference (TJ - T,) 
between the sample and the heating surface varies and so do other tempera- 
ture gradients in the apparatus. Therefore, the heat exchange course is quite 
complicated and the adopted heat transfer model is only justified as long as 
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it is verified by experimentation, i.e., when the assumption is borne out by 
practical Skau’s technique applications. 

The Skau method assumes that at any temperature T, between tempera- 
ture TA (the liquid appearance temperature, Fig. 1) and TK (the temperature 
at the point assumed to represent the end of melting, Fig. 1) the liquid phase 
fraction may be expressed as 

J ( “’ TJ - T,)dZ 

F= =;, 

J ( =, 
q - T,)dZ 

No heat term occurs in eqn. (3) and the partial and overall heat effects are 
expressed in arbitrary units, e.g. surface units on the T-Z diagram. Since 
sample temperature T,(Z) is measured directly, the quantity that remains to 

(3) 

be determined [to solve eqns. (2) and (3)] is the ambient temperature T,(Z) 
with respect to which the difference (TJ - T,) has been established. 

A number of methods have been reported for the determination of the 
q-line, often referred to as the evaluation of the correction for heat losses, 
which reflects the assumption that if there was no uncontrolled heat ex- 
change between the measuring instruments and the environment, the T,-line 
which could be adopted would be the line for the programmer-controlled 
linearly raised temperature Tb of the heating block. 

In practice, the line TJ is determined by analyzing the sample temperature 
increase. While considering the T,-curve section extending from point K, at 
which the phase transition may be approximately assumed to have been 
completed, to point G, at which the sample temperature may be assumed to 
have achieved a rate of growth corresponding to the programmed linear 
increase of the environment temperature, Lyashkevich [2] has pointed out 
that with the adopted heat-exchange model the area KEE’HG (Fig. l), 
representing the heat required to warm the sample from TK to TG, should 
equal the area CDHG which represents the heat of warming the sample from 
Tc = TK to TG along the Tz-curve in the case when no Phase transition takes 
place. Since the EE’HG area is common to both the KEE’HG and the 
CDHG areas, experimental determination of the KEG area allows us to 
place the T-line in the diagram so that the area CDE’E equals the KEG 
area. 

Such a procedure, though formally correct, does not justify using the T, 
temperature line thus determined to follow the advance in the melting 
process on the basis of the heat balance over the area ABDE’K, where, in 
addition to the phase transition, the sample temperature has increased. 
Hence the Lyashkevich correction (known as Correction 1) introduces a 
considerable systematic error which may be partially compensated for only 
by ignoring other corrections, especially that for the liquid phase content at 
the temperature adopted as the melting start point [3]. Cisse and Clechet [4] 
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have formally eliminated this error by suggesting an additional correction 
which eliminates from the calculations a part of the ABDC area representing 
the heat of warming of the sample. This correction, although essentially 
correct, suggests the area corresponding to the thermal effect due to the 
phase transition to be bounded by a broken line ACDE’ which no longer has 
the physical meaning attributed to the q-line. 

It is the purpose of this work to ascertain a corrected q-line, named T’,, 
which would allow us to distinguish at any point in the T,-line the thermal 
effects associated with the warming of the sample from those of the 
solid-liquid phase transition and would thus provide a basis for a more 
correct evaluation of advance in this transition than the heating curve 
determined by Skau’s technique. 

THEORETICAL 

The total thermal effect Q, given by eqn. (2) may be split up into two 
parts: Q,, the heat associated with the phase transition and Q,,, the heat 
required to raise the system temperature. Evidently 

dQ, = AH,,,ndF (4) 

where AH,,, is the molar heat of melting, n is number of moles, and 

de,, = C;dT (5) 

where C; is the heat capacity of the system incorporating the sample, sample 
cell, thermocouple, etc. The actual heat absorbed by the system within the 
time period Z, to Zo is Q = Q, + Q,,. The AKGA area (cf., Fig. 1) 
represents only Q, and the area ABHGA represents Qh. 

Since the overall heat effect per unit time is proportional to the tempera- 
ture difference ( Tj - T,) which drives the heat transfer 

dQ/dZ = dQ,/dZ + dQ,/dZ = k( q - T,) (6) 

where either of the terms may be ascribed a suitable temperature difference. 

dQ,/dZ = k( q - T,) (7) 

dQ,/dZ = k( q’ - Tp) (8) 

From eqns. (6), (7) and (8) follows 

(r,-r,)=&‘-T,)+(Zj”-T,) 

or 

(q’-T,)=(T,-q) 

Equation (9) allows us to eliminate 7;” from eqn. (8) to give 

dQ,/dZ = k( T, - T’,) 

(9) 

00) 
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Integration of eqn. (7) over an interval Z, to Z, allows us to write the 
heat balance of melting of the sample 

Q, = ,kj-zz”( T’J - T,)dZ 
A 

Similarly, to correctly evaluate the liquid phase fraction F, T, in eqn. (3) 
should be replaced by q. To integrate eqn. (11) and for suitable terms of 
eqn. (3) it is necessary to know the temperature difference (T,’ - Tr) as a 
function of time, i.e., to determine T,’ = T,‘(Z). 

Following the assumptions underlying the Skau technique, the heating 
block temperature Tb is a linear function of time; therefore, q and Tp” 
should, also, be straight lines parallel to Tb. 

In the region where no phase transition occurs, Q, = 0 and, from eqns. (7) 
and (11) T,’ = Tp, the two lines coinciding with Tpo to form a straight line 
parallel to q. 

At any point in the warming curve the rate of sample temperature increase 

is given as 

aT,/aZ = tan CX,, (12) 

the angle (Y being that of the tangent to the curve at this point with the 
Z-axis. Then dTP = tan (or dZ. 

Similarly, the programmer-enforced rate of increase of the environment 
temperature along the q-line is given as tan CX, and, in agreement with the 
assumptions of Skau’s technique, is constant. 

i!lT,/aZ = tan (Ye = const. (13) 

In the region where no phase transition takes place and the line Tp = T: = 

T’, is parallel to T,, tan (or = tan c-$ = tan CX,. 
If an absolutely pure substance is melted, the sample temperature Tp 

remains constant as long as the conditions of thermodynamic equilibrium in 
the solid-liquid phase transition are preserved. Since dT, = 0, tan (or = 0 and 
by eqn. (5) de,, = 0 and the heat supplied to the sample is used only for 
melting of the substance 

dQ,/dZ = 0 (melting of pure substance) 

and, by eqn. (ll), 

T,=T, (14) 

In practice we never have absolutely pure substances and, as a result, 
melting occurs over a certain temperature range, the extent of which is 
related to the nature of the major component and to impurity content. 
Within the equilibrium melting region the sample temperature rises, i.e., 
de,, + 0, tan (or # 0, T, > T, > Tp” and thus the line which bounds from 
above the area that represents the thermal effect associated with the phase 
transition will occupy in the Skau diagram an intermediate position between 
the lines TJ and Tpo. 
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To determine the position of this curve (T;) we may consider the relation 
of the temperature difference (T; - T ° )  or (Tj - E )  to the difference or the 
ratio of the rate of growth of the sample temperature (tan ap) to that of the 
environment  temperature (tan a j). 

As already pointed out, the temperature difference (Tj' - T ° )  of interest to 
us may vary from zero (when no phase transition occurs) to (Tj - T ° )  when 
a pure substance melts and the corresponding difference in the rates of 
growth of sample temperature (tan aj - tan ap) may vary from zero to tan 
aj. If we assume the temperature difference (T; - T ° )  to be directly propor-  
tional to the difference (tan aj - tan a p ) w e  have 

( T ; -  T°)  = (Tj - T°)  - (Tj - T;)=a(tanaj-tanap) (15) 

This equation should hold true over the whole experimental range, and may 
be considered in conjuction with the boundary  conditions, i.e., the above- 

= 0 = tan aj or (2) tan ap = 0. The ment ioned extreme cases: (1) tan ap tan ap 
second boundary  condit ion together with eqn. (14) allows us to evaluate the 
proport ionali ty coefficient a as 

a = ( T j -  T°)/tana3 (16) 

then 

T j - r °  (17) 
T j ' -  T ° = (tan a j -  tan Otp) ta-n Otj 

In the model  adopted,  the difference ( T j -  T ° )  is constant  in a given 
experiment;  we denote it by AT °. The solution of this equat ion for T; is 

Tj' = Tj - AT°( tan  a p / t a n  aj) (18) 

Another  approach to establishing Tj' is to consider the relationships of Qh 
and Qm with tan aj and tan Otp. When no phase transition occurs, the entire 
heat is used to warm the sample, dQh/dZ reaches the max imum value and 
the temperature difference in eqn. (10) amounts  to ( T j -  TO), (Tj' coincides 
with TO). This corresponds to the rate of growth of the sample temperature 
determined by tan Otp = tan Otj. 

When the phase transition takes place, the heat used to warm the sample 
is proport ional  to the temperature difference (Tj - Tj') and the rate of growth 
of the sample temperature is given by tan Otp. The remaining heat, propor-  
tional to the temperature difference ( T j ' -  Tp), is used for the phase transi- 
tion. The ratio of the heat dQh/dZ used to warm the sample at any point  to 
the maximum values dQh /dZ is given by the ratio of temperature 
difference ( T j -  T j ' ) / ( T j -  TT) and should be proport ional  to the quotient  
(tan d o / t a n  aj) 

( T j -  T; ) / (Tj  - TO) = b( tan a p / t a n  a3) (19) 
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Fig. 2. Plot for the same experiment as in Fig. 1, with Tj' line. 
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where b is the net proport ionali ty coefficient. Using the first boundary  
condi t ion tan ap = tan aj we find b = 1 whereby eqn. (19) becomes eqn. (18). 

To facilitate the graphical interpretation, it is useful to plot Skau's 
technique data points  in such a scale that tan aj = tan a~ is always unity in 
every experiment. Then all the straight lines Tj and T ° are inclined at an 
angle of 45° to the z-axis. 

Equation (18) then becomes 

T; = Tj - AT ° tan ap (20) 

and eqn. (19) may be written 

T ; =  T ° + AT°(1  - t a n  ap) (21) 

A schematic course of the T;-line is presented in Fig. 2 which shows a 
typical melting curve diagram obtained by the Skau technique. 

As is evident from Fig. 2, the Tj curve coincides with the T ° curve in the 
regions beneath temperature T A and above T c and intersects the T°-curve at 
point  E. This point  corresponds to  point  K located in a non-equil ibrium 
por t ion in the Tp curve, the sample containing a small quanti ty of crystals in 
a superheated liquid. The tangent to the Tp-curve at this point  is parallel to 
the Tj and T ° line. Approximately,  the Z K value corresponding to this might 
be identified with the Z K ( Z )  value adopted  in the literature [2] as the end of 
the melting process but  for the occurrence of the superheating phenomenon  
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(cf., Fig. 1) above the point  K, the rate of growth of the sample temperature 
expressed by tan ap  continues to increase and attains a max imum at the 
inflection point  L, in which presumably the last crystals disappear and the 
curve follows an exponential course tending to the straight T°-line. 

In agreement with the model  adopted for heat transfer, the Tj' curve 
should reach the Tp curve at point  L and cont inue to follow coincidentally. 

Determination of the Tfline 

To use the present method  for establishing the ~'-line, it is necessary to 
know the course of the Tj-line or the difference (Tj - T ° )  = AT ° (eqn. 19). 
The Tj-line may be evaluated as reported in the literature [2] and described 
in the Introduct ion to this study. The line may also be ascertained by using 
the method  applied above to find the T'j-line. For  this purpose we consider 
the end section of the melting curve between points  L and G as corre- 
sponding to the heating of the completely molten sample. 

F rom eqns. (5) and (11) we can write 

C~,dT/dZ= k(Tj - Tj') (22) 

o r  

d T / d Z  = k'( Tj - Tj') where k ' =  ~ (23) c; 

In the region from L to G (and above G), when no phase transition occurs 
line Tj' coincides with Tp. Then 

tan ap = k ' (  Tj - Tp) (24) 

Writing this equation for any two points on the Tp curve we can eliminate 
k '  and find Tj and AT °. Taking one point  between L and G and another  
above G when Tp coincides with T ° we find 

t a n a ° ( T ° - T p )  
A r0 = (25) 

_ 0 tan ap tan ap 

Determination of the melted fraction F 

The surface bounded  by the Tp- and Tj'-lines f rom point  A to L corre- 
sponds to the total heat S c utilized to melt the sample from temperature T A 
adopted as the melting start point  (Fig. 2). 

Therefore, the melted f ract ion F at any point  m in the melting curve 
between A and L may be evaluated as the ratio of the surface S m = A m M A  
to the total surface (So). If, as usual, the sample, at temperature TA, is 
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A 

then 

already partially molten, the corresponding surface S A may be evaluated as 
described before [3]. In this case, the fraction F at point m ( F  m) is 

F m -- SA "1"- am (26) 
sA+Sc 

where 
fZm, 

Sm = Jz A ( Tj' - Tp)dZ (27) 

and 

sc = f~L(~ ' -  rp)dZ (28) 

If we assume that S A is given by one of the equations proposed previously 
[31, e.g. 

(T3-T2)S2S3  

( T 2 -  T A ) S 3 - ( T 3 -  TA)S2 

fz 21  ' -    IdZJ I  - 
s~= (29) 

(7"2- TAI ' -  r,)dZ-(T,- ff:(Z;- ro)dZ 

Thus the fraction melted F m at the temperature T m may be determined 
from the course of Tp(Z) and Tp°(Z) lines using eqns. (25) and (18) after the 
points (TAZA), (TLZL) and (ToZo)  were fixed and the points (T  2, Z2) and 
(T 3, Z3) on the Tp curve were selected at the equilibrium section of the 
melting curve AL, 

EXPERIMENTAL AND CALCULATIONS 

Determination of a tan Otp value for any Tp in eqn. (25) requires that the 
experimental Tp(Z) curve above should be well established. A numerical 
method of smoothing the Tp(Z) curve and then of computation of AT ° has 
been proposed. 

The eqn. (25) has been treated as a differential equation in which time is 
accepted as an independent variable Z and Tp as a dependent  variable y. 

° - - a ,  0 and AT ° should have constant values: tan ap Then tan ap = y ' ,  tan ap 
Tp ° = aZ + b and AT ° = d. 

After rearrangement and integration we receive for y ( Z )  above the L 
point 

[ a ( z - Z o ) ]  (29) y = aZ + b - c exp - 

The method was checked on the melting curves recorded by the Skau 
technique for several organic substances. 
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The apparatus and the procedure were as described in the preceding paper 
[5]. The temperature-rise programme generates linear increase of the 
Copper-Constantan thermocouple used for the temperature controlling volt- 
age. The voltage of a similar thermocouple placed in the sample was used as 
a measure of temperature. The values of the constants a and b were 
determined from the straight line section of the experimental curve Tp(Z) 
above the G point (cf., Fig. 2). 
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Fig. 3a and 3b. Graphs illustrating the influence of choosing point Z o on the fitting precision 
of  the computed curve to the experimental data in the LG area. • . . . . .  , experimental points 
Tv(Z) for 2,6-1utidine sample of 99.86 mol% purity; - - ,  curves Tp(Z) and Tj(Z) 
computed from eqn. 29; @, point  Z 0 adopted for computation. 
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The choice of Z 0 point value presented some difficulties. As it is evident 
that it should be located above the assumed inflection point L, the computa- 
tion was performed for several experimental points lying above point L and 
the first point for which the fitting of the curve given by eqn. (29) to the 
experimental curve was satisfactory was selected. 

The choice of Z 0 determined the value of c. For Z = Z 0 we have 

Yo = aZo + b -  c and c = a Z  o + b - yo 

and c is equivalent to the difference (T ° - Tp) for Z = Z 0 (cf., Fig. 2). 
After the values of a, b and c were computed we were able to find the 

value of d = AT °. Our computation started from the linearization of eqn. 
(29) but the results were unsatisfactory. Then we adopted the FLM proce- 
dure which minimizes the sum of squares by 

( a ( Zi Z0 ) (30) SS = ~_, Tp~ - a Z  i + C exp -- ~ -- 

by the use of Levenberg-Marquardt  [6] algorithm. The deviations have 
diminished to less than 1%. 

The influence of appropriate choice of the Z o point on the description of 
the experimental data Tp(Z) in the region LG by means of eqn. (29) is 
shown in Fig. 3a and 3b, which rePresent the last part of the melting curve of 
a 99.86 mol% pure 2,6-1utidine sample. 

The choice of the Z 0 point below the inflection point L leads to great 
discrepancy; when the Z 0 point is selected in the region of the exponential 
course of the T p - Z  curve the calculated curve agrees well with the experi- 
mental data. 

The numerical calculation of the Tj and Tj' curves allows us to eliminate 
the corrections applied so far, which were found graphically and facilitates 
the automation of computation of the degree of purity of the samples 
examined by Skau's method. 
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